F1 Score


Tag "f1 score".
Hiểu Về Accuracy, Precision, Recall, F1 Và ROC Trong Machine Learning
Accuracy, Precision, Recall, F1 và ROC là những metric quan trọng trong đánh giá mô hình machine learning, giúp tối ưu hóa và điều chỉnh mô hình cho kết quả tốt nhất. Bài viết này sẽ giải thích cách lựa chọn metric phù hợp và ứng dụng các công cụ này để cải thiện hiêu suất của mô hình.
Khám Phá Confusion Matrix: Cùng Tìm Hiểu Về Ma Trận Nhầm Lẫn Trong Học Máy
Trong học máy, Confusion Matrix là một công cụ quan trọng để đánh giá hiệu suất của các mô hình phân loại. Confusion Matrix giúp xác định độ chính xác, độ nhạy và các chỉ số khác nhằm tối ưu hóa mô hình một cách hiệu quả. Bài viết này sẽ đi sâu vào cách sử dụng và diễn giải Confusion Matrix để hiểu rõ hơn kết quả mô hình phân loại cùng với ví dụ thực tế trên Python.