
Loss function hay hàm mất mát đóng vai trò then chốt trong quá trình học máy và deep learning, giúp tối ưu hóa mô hình và cải thiện độ chính xác dự đoán. Bài viết này thảo luận sâu về cách các hàm mất mát này hoạt động, ứng dụng của chúng trong phân loại và hồi quy, cùng các phương pháp tối ưu hóa mô hình hiệu quả.

Cây quyết định là một công cụ mạnh mẽ trong lĩnh vực trí tuệ nhân tạo và machine learning, giúp đơn giản hóa các vấn đề phức tạp thành các quyết định có thể quản lý được. Bài viết này sẽ khám phá cách cây quyết định hoạt động, cách nó phân lớp và dự đoán, cũng như các ưu điểm và hạn chế khi sử dụng.

Hồi quy tuyến tính là kỹ thuật thống kê quan trọng trong phân tích dữ liệu và học máy. Nó là bước đầu tiên mà mọi nhà khoa học dữ liệu cần hiểu rõ, nhằm xây dựng nền tảng vững chắc cho các mô hình phức tạp hơn trong tương lai. Bài viết này sẽ đi sâu vào công thức, cách thức hoạt động và ứng dụng thực tế của hồi quy tuyến tính.