
Trong bối cảnh trí tuệ nhân tạo ngày càng phát triển, việc xây dựng các hệ thống thông minh dựa trên Pipeline RAG đang trở nên phổ biến. Bài viết này sẽ giới thiệu chi tiết về các công đoạn, từ lưu trữ dữ liệu với Vector DB, tạo embeddings đến lập chỉ mục với FAISS và Chroma.

Trong thời đại cách mạng kỹ thuật số, chatbot trở thành công cụ thiết yếu trong doanh nghiệp và dịch vụ khách hàng. Để xây dựng một chatbot thông minh, Rasa cung cấp giải pháp mạnh mẽ cho việc **phân loại ý định** và **điền khuyết thông tin**. Bài viết này sẽ hướng dẫn bạn từng bước để áp dụng Rasa vào việc phát triển chatbot hiệu quả.

Trong thời đại ngày nay, tối ưu hóa các mô hình xử lý ngôn ngữ tự nhiên (NLP) trở nên cực kỳ quan trọng với sự phát triển của các ứng dụng thông minh. Bài viết này khám phá cách sử dụng các công cụ của Hugging Face với mBERT và PhoBERT để tối ưu hóa quy trình huấn luyện mô hình ngôn ngữ đa ngữ trong xử lý phân loại văn bản.

TF-IDF và Logistic Regression là hai công cụ mạnh mẽ trong xử lý và phân tích dữ liệu văn bản. Bằng cách kết hợp với thư viện Scikit-learn, ta có thể dễ dàng triển khai các mô hình dự đoán hiệu quả. Bài viết này sẽ hướng dẫn bạn cách sử dụng TF-IDF và Logistic Regression để phân loại cảm xúc từ dữ liệu một cách tối ưu.

Trong kỷ nguyên số, xử lý ngôn ngữ tự nhiên đóng vai trò quan trọng trong việc phát triển các ứng dụng thông minh. Bài viết này khám phá các công cụ nổi bật như spaCy, Underthesea và VnCoreNLP, đồng thời hướng dẫn quy trình tiền xử lý văn bản gồm thu thập dữ liệu, chuẩn hoá, tách từ, loại stopwords và lưu trữ quy trình để tái sử dụng.

Trong thế giới trí tuệ nhân tạo, các khái niệm như Transformer, BERT, và Self-Attention đang mở ra kỷ nguyên mới trong xử lý ngôn ngữ tự nhiên. Ba cấu trúc này không chỉ cải thiện khả năng học sâu mà còn thúc đẩy sự phát triển vượt bậc trong nhiều lĩnh vực công nghệ. Bài viết này sẽ giúp bạn khám phá chi tiết những khái niệm quan trọng này.

Phân loại văn bản là một lĩnh vực quan trọng trong khoa học máy tính, với ứng dụng từ tìm kiếm thông tin đến phân tích dữ liệu. Bài viết này sẽ tìm hiểu cách sử dụng Naive Bayes và SVM kết hợp với Pipeline TF-IDF để cải thiện hiệu quả phân loại, và những mẹo chống overfitting hiệu quả.

Trong xử lý ngôn ngữ tự nhiên, các kỹ thuật như gắn nhãn từ loại và cú pháp phụ thuộc là những công cụ quan trọng giúp máy tính hiểu và phân tích ngữ nghĩa văn bản. Bài viết này sẽ khám phá cách các kỹ thuật này hoạt động và vai trò của chúng trong việc phát triển các ứng dụng xử lý ngôn ngữ hiện đại.

Tiền xử lý văn bản là bước quan trọng trong xử lý ngôn ngữ tự nhiên, đặc biệt là tiếng Việt, một ngôn ngữ giàu ngữ nghĩa. Bài viết này khám phá các kỹ thuật cốt lõi như tách từ, loại bỏ stopwords, và chuẩn hoá văn bản để giúp cải thiện chất lượng dữ liệu cho các mô hình máy học và ứng dụng AI.

Trong lĩnh vực xử lý ngôn ngữ tự nhiên, việc biểu diễn văn bản dưới dạng số là điều cốt yếu. Các kỹ thuật cổ điển như Bag-of-Words và TF-IDF đã đóng góp quan trọng trong công việc này. Bài viết này sẽ giúp bạn hiểu rõ về cách thức hoạt động, ưu điểm cũng như hạn chế và các cải tiến của chúng trong minh họa và mô hình hóa dữ liệu văn bản.