
Trong học máy, Confusion Matrix là một công cụ quan trọng để đánh giá hiệu suất của các mô hình phân loại. Confusion Matrix giúp xác định độ chính xác, độ nhạy và các chỉ số khác nhằm tối ưu hóa mô hình một cách hiệu quả. Bài viết này sẽ đi sâu vào cách sử dụng và diễn giải Confusion Matrix để hiểu rõ hơn kết quả mô hình phân loại cùng với ví dụ thực tế trên Python.

Naive Bayes là một trong những thuật toán học máy phổ biến nhất hiện nay, nổi bật với sự đơn giản và khả năng áp dụng rộng rãi. Bài viết này sẽ đi sâu vào khám phá Naive Bayes, từ nguyên lý cơ bản đến các ứng dụng thực tế và cách thức hoạt động của thuật toán này trong việc phân loại văn bản, cùng với một số so sánh thú vị với thuật toán K-Nearest Neighbors.

K-Nearest Neighbors (KNN) là một mô hình học máy đơn giản, phổ biến trong phân loại và hồi quy. Bài viết này sẽ đi sâu vào việc làm rõ KNN hoạt động thế nào, khi nào nên sử dụng và ứng dụng thực tiễn. Thông qua việc khám phá các ví dụ và ưu nhược điểm của KNN, bạn sẽ hiểu rõ hơn về sức mạnh và giới hạn của thuật toán này.

Cây quyết định là một công cụ mạnh mẽ trong lĩnh vực trí tuệ nhân tạo và machine learning, giúp đơn giản hóa các vấn đề phức tạp thành các quyết định có thể quản lý được. Bài viết này sẽ khám phá cách cây quyết định hoạt động, cách nó phân lớp và dự đoán, cũng như các ưu điểm và hạn chế khi sử dụng.

Phân loại và dự đoán là hai nhánh quan trọng trong học máy. Phân loại tập trung vào việc chia dữ liệu vào các nhóm khác nhau, trong khi dự đoán hướng đến ước lượng giá trị. Bài viết này sẽ giúp bạn hiểu rõ hơn về sự khác biệt này, cũng như ứng dụng thực tế và ví dụ về từng lĩnh vực.