
Perceptron là một trong những thuật toán cơ bản nhất trong học máy, đóng vai trò quan trọng trong sự phát triển của trí tuệ nhân tạo. Trong bài viết này, chúng ta sẽ khám phá lịch sử hình thành, cấu trúc và nguyên tắc hoạt động của Perceptron, cũng như vai trò của nó trong Deep Learning. Bên cạnh đó, chúng ta sẽ cùng tìm hiểu hạn chế và cách triển khai Perceptron bằng ngôn ngữ lập trình Python.

Luật kết hợp là kỹ thuật mạnh mẽ trong học máy, giúp khám phá các quan hệ thú vị giữa các biến trong dữ liệu lớn. Được ứng dụng rộng rãi trong phân tích dữ liệu giao dịch, phương pháp này cho phép các nhà phân tích xác định các kết hợp sản phẩm phổ biến, từ đó tối ưu hóa chiến lược kinh doanh và tăng doanh thu.

Clustering, hay phân nhóm, là kỹ thuật quan trọng trong học máy không cần nhãn, giúp nhóm các đối tượng tương tự nhau trong một tập dữ liệu. Với nhiều phương pháp khác nhau như k-means, hierarchical clustering và DBSCAN, clustering cung cấp các cách tiếp cận đa dạng nhằm phát hiện cấu trúc ngầm của dữ liệu. Bài viết này sẽ cung cấp kiến thức sâu rộng và ứng dụng của clustering trong thực tế.

Hyperparameter tuning là bước quan trọng trong quá trình phát triển mô hình học máy, giúp cải thiện hiệu suất và độ chính xác. Bài viết này sẽ giải thích về hyperparameter, khác biệt giữa tham số và siêu tham số, và khám phá các phương pháp phổ biến như Grid Search và Random Search để tối ưu hóa mô hình của bạn.

Trong học máy, Confusion Matrix là một công cụ quan trọng để đánh giá hiệu suất của các mô hình phân loại. Confusion Matrix giúp xác định độ chính xác, độ nhạy và các chỉ số khác nhằm tối ưu hóa mô hình một cách hiệu quả. Bài viết này sẽ đi sâu vào cách sử dụng và diễn giải Confusion Matrix để hiểu rõ hơn kết quả mô hình phân loại cùng với ví dụ thực tế trên Python.

PCA, hay Phân tích Thành phần Chính, là một phương pháp giảm chiều dữ liệu quan trọng trong học máy. Nó giúp tối ưu hóa dữ liệu bằng cách chuyển đổi dữ liệu gốc sang một hệ trục tọa độ mới, tối đa hóa sự biến thiên. Bài viết này sẽ khám phá ứng dụng và ưu nhược điểm của PCA trong việc xử lý dữ liệu lớn mà không mất đi thông tin quan trọng.