
Trong thế giới học máy và trí tuệ nhân tạo, tensors đóng vai trò quan trọng trong việc xử lý và phân tích dữ liệu. Bài viết này sẽ giúp bạn hiểu rõ hơn về khái niệm tensor, cách sử dụng chúng trong các thư viện như PyTorch và TensorFlow, cũng như cách phân biệt giữa tensor, mảng và ma trận.

Trong kỷ nguyên của công nghệ thông tin, các thuật toán Machine Learning (ML) ngày càng trở nên phổ biến, được áp dụng rộng rãi từ xử lý ngôn ngữ tự nhiên đến tài chính. Bài viết này sẽ giúp bạn hiểu rõ hơn về các thuật toán ML thông dụng, so sánh ưu nhược điểm của chúng, và cung cấp gợi ý về việc lựa chọn mô hình phù hợp tùy theo từng bài toán cụ thể.

Thuật toán Apriori là một công cụ mạnh mẽ trong việc khai phá dữ liệu và phân tích thị trường, đặc biệt là trong phân tích giỏ hàng. Bài viết này sẽ dẫn bạn khám phá Apriori, tìm hiểu cách hoạt động của nó, các chỉ số đánh giá luật kết hợp, và ứng dụng thực tế thông qua Python, cùng với so sánh Apriori và FP-Growth.

PCA, hay Phân tích Thành phần Chính, là một phương pháp giảm chiều dữ liệu quan trọng trong học máy. Nó giúp tối ưu hóa dữ liệu bằng cách chuyển đổi dữ liệu gốc sang một hệ trục tọa độ mới, tối đa hóa sự biến thiên. Bài viết này sẽ khám phá ứng dụng và ưu nhược điểm của PCA trong việc xử lý dữ liệu lớn mà không mất đi thông tin quan trọng.

Data Science đang trở thành trụ cột quan trọng trong kỷ nguyên số hiện nay. Với khả năng khai thác giá trị từ dữ liệu khổng lồ, Data Science mở ra những cơ hội phát triển vượt bậc trong kinh doanh và công nghệ. Bài viết này sẽ đưa bạn khám phá sâu hơn về lĩnh vực này, từ khái niệm cơ bản đến các ứng dụng thực tế và lộ trình học tập.

Naive Bayes là một trong những thuật toán học máy phổ biến nhất hiện nay, nổi bật với sự đơn giản và khả năng áp dụng rộng rãi. Bài viết này sẽ đi sâu vào khám phá Naive Bayes, từ nguyên lý cơ bản đến các ứng dụng thực tế và cách thức hoạt động của thuật toán này trong việc phân loại văn bản, cùng với một số so sánh thú vị với thuật toán K-Nearest Neighbors.

K-Nearest Neighbors (KNN) là một mô hình học máy đơn giản, phổ biến trong phân loại và hồi quy. Bài viết này sẽ đi sâu vào việc làm rõ KNN hoạt động thế nào, khi nào nên sử dụng và ứng dụng thực tiễn. Thông qua việc khám phá các ví dụ và ưu nhược điểm của KNN, bạn sẽ hiểu rõ hơn về sức mạnh và giới hạn của thuật toán này.

Cây quyết định là một công cụ mạnh mẽ trong lĩnh vực trí tuệ nhân tạo và machine learning, giúp đơn giản hóa các vấn đề phức tạp thành các quyết định có thể quản lý được. Bài viết này sẽ khám phá cách cây quyết định hoạt động, cách nó phân lớp và dự đoán, cũng như các ưu điểm và hạn chế khi sử dụng.

Feature Engineering và Feature Extraction là hai giai đoạn quan trọng trong quá trình phát triển mô hình học máy. Việc tạo ra và chọn lọc những đặc trưng hiệu quả giúp nâng cao độ chính xác và khả năng ra quyết định của mô hình. Bài viết này sẽ hướng dẫn bạn cách tận dụng hai kỹ thuật này để tối ưu hóa mô hình của mình.