
Trích xuất từ khoá là một phần không thể thiếu trong xử lý ngôn ngữ tự nhiên (NLP). Bài viết này sẽ giới thiệu ba phương pháp trích xuất từ khoá phổ biến: Yake, KeyBERT, và TextRank. Chúng tôi sẽ hướng dẫn bạn qua từng bước sử dụng những công cụ này để có được những từ khoá chất lượng nhất từ tài liệu của bạn.

Trong thời đại cách mạng kỹ thuật số, chatbot trở thành công cụ thiết yếu trong doanh nghiệp và dịch vụ khách hàng. Để xây dựng một chatbot thông minh, Rasa cung cấp giải pháp mạnh mẽ cho việc **phân loại ý định** và **điền khuyết thông tin**. Bài viết này sẽ hướng dẫn bạn từng bước để áp dụng Rasa vào việc phát triển chatbot hiệu quả.

Trong thời đại ngày nay, tối ưu hóa các mô hình xử lý ngôn ngữ tự nhiên (NLP) trở nên cực kỳ quan trọng với sự phát triển của các ứng dụng thông minh. Bài viết này khám phá cách sử dụng các công cụ của Hugging Face với mBERT và PhoBERT để tối ưu hóa quy trình huấn luyện mô hình ngôn ngữ đa ngữ trong xử lý phân loại văn bản.

Trong kỷ nguyên số, xử lý ngôn ngữ tự nhiên đóng vai trò quan trọng trong việc phát triển các ứng dụng thông minh. Bài viết này khám phá các công cụ nổi bật như spaCy, Underthesea và VnCoreNLP, đồng thời hướng dẫn quy trình tiền xử lý văn bản gồm thu thập dữ liệu, chuẩn hoá, tách từ, loại stopwords và lưu trữ quy trình để tái sử dụng.

Python là một ngôn ngữ lập trình mạnh mẽ và đa dụng, thường được ưa chuộng trong phát triển các dự án học máy. Để bắt đầu một dự án NLP hiệu quả, việc thiết lập môi trường phát triển phù hợp là điều thiết yếu. Bài viết này sẽ hướng dẫn bạn từng bước tạo và quản lý môi trường Python tối ưu bằng cách sử dụng Conda, Pip và Jupyter.

Trong lĩnh vực xử lý ngôn ngữ tự nhiên, mô hình Seq2Seq và cơ chế Attention đã trở thành công cụ không thể thiếu trong việc dịch thuật và tóm tắt văn bản. Những cải tiến này đã cải thiện đáng kể độ chính xác và tốc độ của các ứng dụng dịch máy, nhờ vào khả năng học hỏi các phụ thuộc ngữ nghĩa và ngữ cảnh phức tạp.

Tiếng Việt là một ngôn ngữ phong phú với nhiều đặc thù về dấu và từ ghép. Trong xử lý ngôn ngữ tự nhiên (NLP), việc hiểu và tách từ tiếng Việt đóng vai trò quan trọng. Bài viết này sẽ khám phá các công cụ phổ biến và các đặc thù ngôn ngữ cần lưu ý khi làm việc với tiếng Việt.

Trong xử lý ngôn ngữ tự nhiên, các kỹ thuật như gắn nhãn từ loại và cú pháp phụ thuộc là những công cụ quan trọng giúp máy tính hiểu và phân tích ngữ nghĩa văn bản. Bài viết này sẽ khám phá cách các kỹ thuật này hoạt động và vai trò của chúng trong việc phát triển các ứng dụng xử lý ngôn ngữ hiện đại.

Trong lĩnh vực Xử lý Ngôn ngữ Tự nhiên (NLP), việc hiểu rõ các khái niệm như Token, Type, Lemma, Corpus và Vocabulary là cực kỳ quan trọng. Những thuật ngữ này không chỉ đóng vai trò cơ bản mà còn ảnh hưởng trực tiếp đến cách mà các hệ thống ngôn ngữ xử lý và phân tích dữ liệu văn bản. Bài viết này sẽ giúp bạn khám phá sâu hơn về những khái niệm này cũng như sự khác biệt giữa chúng.

Xử lý ngôn ngữ tự nhiên (NLP) là một trong những nhánh quan trọng trong trí tuệ nhân tạo và khoa học máy tính, tạo nên khả năng để máy tính hiểu và phản hồi ngôn ngữ con người. Bài viết này sẽ cung cấp cái nhìn toàn diện về định nghĩa, lịch sử phát triển và ứng dụng thực tế của NLP.